Smiley face

Deorowicz and Danek Algorithm_MLCS(Bit-Parallel, 2013)


Main features
Abstract of the paper [Deorowicz 2013]

It is often a necessity to compare some sequences to find out how similar they are. There are many similarity measures that can be used, e.g., longest common subsequence, edit distance, sequence alignment. Recently a merged longest common subsequence (MergedLCS) problem was formulated with applications in bioinformatics. We propose the bit-parallel algorithms for the MergedLCS problem and evaluate them in practice showing that they are usually tens times faster than the already published methods.

C++ source code
int MLCS_Bitpar(vector< int> T, vector< int> A, vector< int> B, int Tlen, int Alen, int Blen, int size, int WordSize) {
    vector< vector< uint64_t> > W1(Blen + 1, vector< uint64_t>(ceil((Tlen + 1) / WordSize + 1)));
    vector< vector< uint64_t> > W2(Blen + 1, vector< uint64_t>(ceil((Tlen + 1) / WordSize + 1)));
    vector< vector< uint64_t> > Y(size, vector< uint64_t>(ceil((Tlen + 1) / WordSize + 1), 0));
    uint64_t carrybitW = 0;
    uint64_t MaxNUM64 = 0XFFFFFFFFFFFFFFFF;//2^64 - 1
    uint64_t modLastWord = 0X0000020000000000;//2^42
                                              //uint64_t modLastWord = 0X0000000000000010;
    int WordNum = ceil((Tlen + 1) / WordSize + 1) - 1;

    //Constructing array of Y

    uint64_t shiftNum = 1;
    for (int i = 1; i <= min(Tlen, WordSize - 1); ++i) {
        shiftNum = shiftNum << 1;
        Y[T[i] - 1][0] |= shiftNum;
    }

    if (Tlen > 63)
        for (int i = WordSize; i <= Tlen; ++i) {
            shiftNum = shiftNum << 1;
            if (i % WordSize == 0)
                shiftNum = 1;
            Y[T[i] - 1][floor(i / WordSize)] |= shiftNum;
        }

    //Initialisation
    for (int i = 0; i <= WordNum; ++i) {
        W2[0][i] = MaxNUM64;


    }
    W2[0][WordNum] %= modLastWord;

    //Calculating boundaries
    uint64_t U = 0, tmpa = 0;
    for (int k = 1; k <= Blen; ++k) {
        carrybitW = 0;
        for (int i = 0; i <= WordNum - 1; ++i)
        {
            tmpa = W2[k - 1][i];
            U = tmpa & Y[B[k] - 1][i];
            W2[k][i] = (tmpa + U + carrybitW) | (W2[k - 1][i] - U);
            //detect overflow
            if (U > MaxNUM64 - tmpa)
                carrybitW = 1;
            else
                carrybitW = 0;

        }
        tmpa = W2[k - 1][WordNum];
        U = tmpa& Y[B[k] - 1][WordNum];
        W2[k][WordNum] = ((tmpa + U + carrybitW) % modLastWord) | (tmpa - U);
        //detect overflow
        if (U > MaxNUM64 - tmpa)
            carrybitW = 1;
        else
            carrybitW = 0;
    }

    int layer = 1;
    while (1) {
        if (layer % 2 == 1) {
            carrybitW = 0;
            for (int i = 0; i <= WordNum - 1; ++i)
            {
                tmpa = W2[0][i];
                U = tmpa & Y[A[layer] - 1][i];
                W1[0][i] = (tmpa + U + carrybitW) | (tmpa - U);
                //detect overflow
                if (U > MaxNUM64 - tmpa)
                    carrybitW = 1;
                else
                    carrybitW = 0;

            }
            tmpa = W2[0][WordNum];
            U = tmpa & Y[A[layer] - 1][WordNum];
            W1[0][WordNum] = ((tmpa + U + carrybitW) % modLastWord) | (tmpa - U);
            //detect overflow
            if (U > MaxNUM64 - tmpa)
                carrybitW = 1;
            else
                carrybitW = 0;

            //Main calculations
            uint64_t Up = 0, Upp = 0, Wp = 0, Wpp = 0, Ut = 0, Wt = 0, Vt = 0, carrybitWp = 0, carrybitWpp = 0;
            int tmpv = ceil(log2(WordSize)) - 1;
            for (int k = 1; k <= Blen; ++k) {
                carrybitWp = 0, carrybitWpp = 0;
                bool f = false;
                for (int i = 0; i <= WordNum - 1; ++i)
                {
                    tmpa = W2[k][i];
                    Up = tmpa & Y[A[layer] - 1][i];
                    Wp = (tmpa + Up + carrybitWp) | (tmpa - Up);
                    if (Up > MaxNUM64 - tmpa)
                        carrybitWp = 1;
                    else
                        carrybitWp = 0;

                    tmpa = W1[k - 1][i];
                    Upp = tmpa & Y[B[k] - 1][i];
                    Wpp = (tmpa + Upp + carrybitWpp) | (tmpa - Upp);
                    if (Upp > MaxNUM64 - tmpa)
                        carrybitWpp = 1;
                    else
                        carrybitWpp = 0;

                    Ut = Wp | Wpp;
                    Wt = Wp ^ Wpp;
                    Vt = Wt;

                    for (int ipp = 0; ipp <= tmpv; ++ipp) {
                        Vt = Vt ^ (Vt << (1 << ipp));
                    }
                    if (f == true) Vt = ~Vt;
                    if ((Vt & 0X8000000000000000) > 0) f = true;
                    else f = false;
                    W1[k][i] = ~(Wt & Vt) & Ut;
                }
                tmpa = W2[k][WordNum];
                Up = tmpa & Y[A[layer] - 1][WordNum];
                Wp = ((tmpa + Up + carrybitWp) % modLastWord) | (tmpa - Up);
                if (Up > MaxNUM64 - tmpa)
                    carrybitWp = 1;
                else
                    carrybitWp = 0;

                tmpa = W1[k - 1][WordNum];
                Upp = tmpa & Y[B[k] - 1][WordNum];
                Wpp = ((tmpa + Upp + carrybitWpp) % modLastWord) | (tmpa - Upp);
                if (Upp > MaxNUM64 - tmpa)
                    carrybitWpp = 1;
                else
                    carrybitWpp = 0;

                Ut = Wp | Wpp;
                Wt = Wp ^ Wpp;
                Vt = Wt;

                for (int ipp = 0; ipp <= tmpv; ++ipp) {
                    Vt = Vt ^ (Vt << (1 << ipp));
                }
                if (f == true) Vt = ~Vt;
                if ((Vt & 0X8000000000000000) > 0) f = true;
                else f = false;
                W1[k][WordNum] = ~(Wt & Vt) & Ut;
            }

            if (layer == Alen)
            {
                int z = 0;
                uint64_t Vz = 0;
                for (int i = 0; i <= WordNum - 1; ++i) {
                    Vz = ~W1[Blen][i];
                    while (Vz != 0) {
                        Vz = Vz & (Vz - 1);
                        ++z;
                    }
                }
                Vz = (~W1[Blen][WordNum]) % modLastWord;
                while (Vz != 0) {
                    Vz = Vz & (Vz - 1);
                    ++z;
                }
                return z;
            }
            ++layer;
        }
        else {

            carrybitW = 0;
            for (int i = 0; i <= WordNum - 1; ++i)
            {
                tmpa = W1[0][i];
                U = tmpa & Y[A[layer] - 1][i];
                W2[0][i] = (tmpa + U + carrybitW) | (tmpa - U);
                //detect overflow
                if (U > MaxNUM64 - tmpa)
                    carrybitW = 1;
                else
                    carrybitW = 0;

            }
            tmpa = W1[0][WordNum];
            U = tmpa & Y[A[layer] - 1][WordNum];
            W2[0][WordNum] = ((tmpa + U + carrybitW) % modLastWord) | (tmpa - U);
            //detect overflow
            if (U > MaxNUM64 - tmpa)
                carrybitW = 1;
            else
                carrybitW = 0;

            //Main calculations
            uint64_t Up = 0, Upp = 0, Wp = 0, Wpp = 0, Ut = 0, Wt = 0, Vt = 0, carrybitWp = 0, carrybitWpp = 0;
            int tmpv = ceil(log2(WordSize)) - 1;
            for (int k = 1; k <= Blen; ++k) {
                carrybitWp = 0, carrybitWpp = 0;
                bool f = false;
                for (int i = 0; i <= WordNum - 1; ++i)
                {
                    tmpa = W1[k][i];
                    Up = tmpa & Y[A[layer] - 1][i];
                    Wp = (tmpa + Up + carrybitWp) | (tmpa - Up);
                    if (Up > MaxNUM64 - tmpa)
                        carrybitWp = 1;
                    else
                        carrybitWp = 0;

                    tmpa = W2[k - 1][i];
                    Upp = tmpa & Y[B[k] - 1][i];
                    Wpp = (tmpa + Upp + carrybitWpp) | (tmpa - Upp);
                    if (Upp > MaxNUM64 - tmpa)
                        carrybitWpp = 1;
                    else
                        carrybitWpp = 0;

                    Ut = Wp | Wpp;
                    Wt = Wp ^ Wpp;
                    Vt = Wt;

                    for (int ipp = 0; ipp <= tmpv; ++ipp) {
                        Vt = Vt ^ (Vt << (1 << ipp));
                    }
                    if (f == true) Vt = ~Vt;
                    if ((Vt & 0X8000000000000000) > 0) f = true;
                    else f = false;
                    W2[k][i] = ~(Wt & Vt) & Ut;
                }
                tmpa = W1[k][WordNum];
                Up = tmpa & Y[A[layer] - 1][WordNum];
                Wp = ((tmpa + Up + carrybitWp) % modLastWord) | (tmpa - Up);
                if (Up > MaxNUM64 - tmpa)
                    carrybitWp = 1;
                else
                    carrybitWp = 0;

                tmpa = W2[k - 1][WordNum];
                Upp = tmpa & Y[B[k] - 1][WordNum];
                Wpp = ((tmpa + Upp + carrybitWpp) % modLastWord) | (tmpa - Upp);
                if (Upp > MaxNUM64 - tmpa)
                    carrybitWpp = 1;
                else
                    carrybitWpp = 0;

                Ut = Wp | Wpp;
                Wt = Wp ^ Wpp;
                Vt = Wt;

                for (int ipp = 0; ipp <= tmpv; ++ipp) {
                    Vt = Vt ^ (Vt << (1 << ipp));
                }
                if (f == true) Vt = ~Vt;
                if ((Vt & 0X8000000000000000) > 0) f = true;
                else f = false;
                W2[k][WordNum] = ~(Wt & Vt) & Ut;
            }
            if (layer == Alen)
            {
                int z = 0;
                uint64_t Vz = 0;
                for (int i = 0; i <= WordNum - 1; ++i) {
                    Vz = ~W2[Blen][i];
                    while (Vz != 0) {
                        Vz = Vz & (Vz - 1);
                        ++z;
                    }
                }
                Vz = (~W2[Blen][WordNum]) % modLastWord;
                while (Vz != 0) {
                    Vz = Vz & (Vz - 1);
                    ++z;
                }
                return z;
            }
            ++layer;
        }
    }
}

The files
  All_MLCS.cpp

Reference
Deorowicz, S., Danek, A., 2013. Bit-parallel algorithms for the merged longest common sub- sequence problem. International Journal of Foundations of Computer Science 24, 1281–1298.